Different Concepts in Alcohol Research: Are the Observed Protective Health Effects of Moderate Beer Consumption Still Valid?

Luc Djoussé, MD, ScD, MPH, FAHA

Associate Professor of Medicine, Harvard Medical School Director of Research, Div. Aging, Brigham & Women's Hospital Chief Epidemiologist, MAVERIC, Boston VA

Beer and Health

THE 8TH EUROPEAN

BEER AND HEALTH SYMPOSIUM

Brussels 4/20/2017

Outline

A. Hypothesis from Observational Studies

B. Limitations of Observational Studies

C. Mendelian Randomization to ↓Bias

D. Caveats of Mendelian Randomization

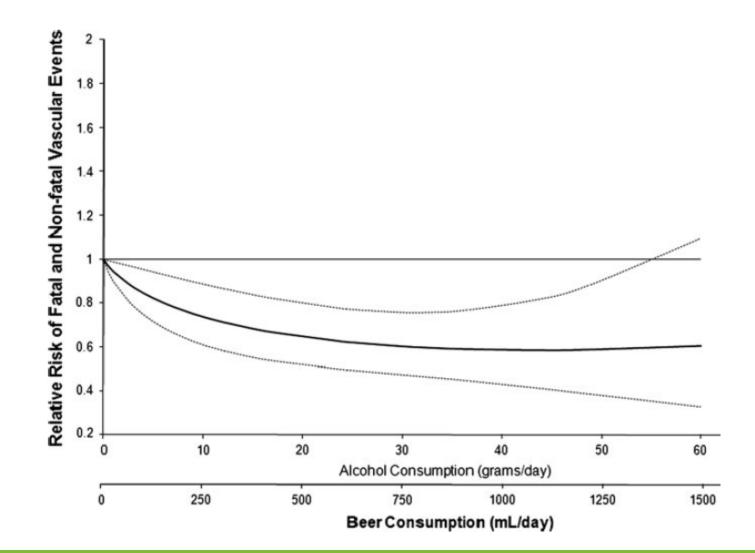
A. Current Hypothesis from Observational Studies

Alcohol Intake & CHD Mortality

Study

Blackwelder et al 1 Kittner et al 1983⁶⁴ Colditz et al 1985³³ Friedman et al 198 Kono et al 1986⁷¹ Suhonen et al 198 Garfinkel et al 1988 Boffetta et al 1990 Garg et al 199247 Suh et al 1992⁹¹ Cullen et al 1993³³ Rehm et al 1997⁸³ Thun et al 1997⁹³ Yuan et al 1997¹⁰⁴ Maskarinec et al 1 Albert et al 1999²² Renaud et al 1999 Valmadrid et al 19 Solomon et al 2009 Trevisan et al 2001 Diem et al 2003³⁵ Mukamal et al 200 Knoops et al 2004 Doll et al 2005³⁸ Ebbert et al 2005⁴⁰ Gun et al 2006⁵² Harriss et al 20075 Xu et al 2007¹⁰² Hart et al 200856 Pedersen et al 200 Bazzano et al 2009 Overall: P<0.001, I2=

	Relative risk (95% Cl)	Weight (%)*	Relative risk (95% CI)
1980 ²⁷		2.63	0.54 (0.37 to 0.79)
64		1.49	0.95 (0.52 to 1.75)
32	▲	1.04	0.52 (0.24 to 1.12)
86 ⁴³		4.60	0.77 (0.67 to 0.88)
		3.68	0.66 (0.52 to 0.85)
37 ⁹²		2.35	1.25 (0.82 to 1.91)
38 ⁴⁶		5.11	0.55 (0.52 to 0.57)
0 ²⁸		5.12	0.82 (0.79 to 0.86)
		3.72	0.90 (0.71 to 1.15)
		3.09	0.72 (0.52 to 0.98)
33		3.06	0.80 (0.58 to 1.10)
3		4.12	0.82 (0.67 to 0.99)
		5.00	0.82 (0.76 to 0.88)
4		2.22	0.64 (0.41 to 1.00)
1998 ⁷⁶		2.67	0.78 (0.54 to 1.14)
2		3.89	0.73 (0.59 to 0.92)
9 ⁸⁴		3.83	0.86 (0.69 to 1.09)
999 ⁹⁷		1.59	0.49 (0.27 to 0.86)
00 ⁹⁰		2.49	0.59 (0.40 to 0.89)
1 ⁹⁵		3.08	0.61 (0.44 to 0.83)
Ē		0.59	0.77 (0.26 to 2.22)
03 ⁷⁷		4.16	0.70 (0.58 to 0.85)
4 ⁷⁰		2.53	0.60 (0.40 to 0.88)
	Tei - 1	4.68	0.71 (0.63 to 0.81)
40		3.28	0.86 (0.64 to 1.15)
		4.29	0.66 (0.55 to 0.78)
55		2.09	1.02 (0.64 to 1.63)
		2.14	0.70 (0.40 to 1.00)
		4.82	0.95 (0.86 to 1.06)
08 ⁸²		4.70	0.81 (0.72 to 0.92)
9 ²⁴		1.94	0.72 (0.44 to 1.19)
=87.5%		100.00	0.75 (0.68 to 0.81)
	0.25 0.50 0.75 1.00 1.50 2.00	D	r


*Weight from random effects analysis

Beer and Health

Ronksley P E et al. BMJ 2011;342:bmj.d67

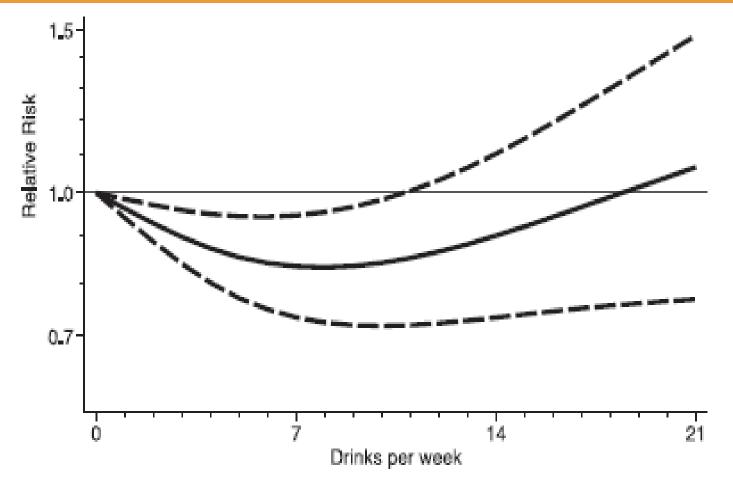
0.75 (0.68-0.81)

Beer and Fatal/Non-Fatal CVD

Beer and Health

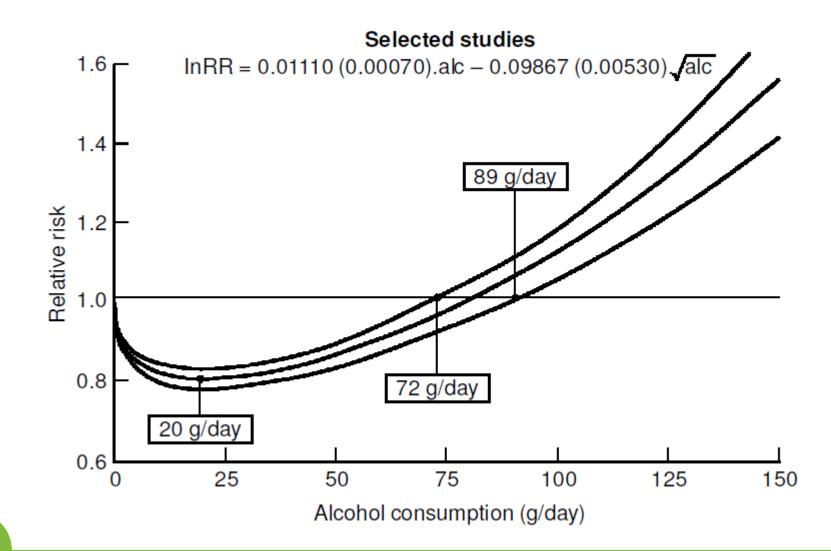
Costanzo Eur J Epidemiol 2011;26:833-50

Alcohol and PAD


	Wine	Beer	Spirits	
<u>Drinks/wk</u>				
0	1.0 (ref)	1.0 (ref)	1.0 (ref)	
1-7	0.81 (0.64-1.03)	0.69 (0.52-0.91)	0.88 (0.69-1.10)	
≥8	0.64 (0.38-1.07)	0.60 (0.43-0.83)	0.89 (0.68-1.18)	
P for trend	0.013	0.0005	0.30	

Adjusted for age, diabetes, CHD, BP, smoking status, pack-years, and other types of beverage

Djousse et al. Circulation 2000;102:3092-97


Alcohol Intake & Heart Failure Meta-Analysis

Larsson et al. Eur J Heart Fail 2015;17:367-73

Beer and Health

Alcohol and Mortality

Beer and Health

Corrao et al. Addiction 2000;95:1505-23

Not All Findings Showed Benefits

TABLE 5. Adjusted relative risks (RRs) of all-cause mortality for different levels of alcohol consumption compared with lifetime abstainers estimated from higher quality studies^a with and without one influential study (Friesema et al., 2007)

	Model 1: Including Friesema et al.				Model 2: Excluding Friesema et al.			
Drinking categories ^b	n^b	RR ^c	[95% CI]	р	n^b	RR ^c	[95% CI]	р
Former drinker	19	1.14	[0.77, 1.69]	.4950	17	1.31	[1.11, 1.55]	.0022
Low volume (1.30-<25 g/day)	39	0.89	[0.62, 1.29]	.5279	35	1.04	[0.95, 1.15]	.3557
Medium volume (25-<45 g/day)	11	1.08	[0.72, 1.62]	.7123	9	1.29	[1.06, 1.56]	.0106
High volume (45-<65 g/day)	7	0.95	[0.62, 1.46]	.8113	5	1.07	[0.83, 1.36]	.6100
Higher volume (≥65 g/day)	11	1.58	[1.05, 2.38]	.0295	11	1.85	[1.51, 2.27]	.0001
All drinkers combined	87	1.10	[0.86, 1.41]	.3557	77	1.19	[0.94, 1.49]	.1065

Notes: **Bold** indicates statistical significance. CI = confidence interval. ^aStudies in which only lifetime abstainers included in the reference group, adequate alcohol measure, median age <60 years at intake and \geq 55 years at follow-up; ^bnumber of risk estimates; ^cestimates adjusted for sampling variability and between-study variation.

Stockwell et al. J Stud Alcohol Drugs 2016;77:185

Alcohol and All-Cause Mortality

N=24,029 from Health & Retirement Study, US

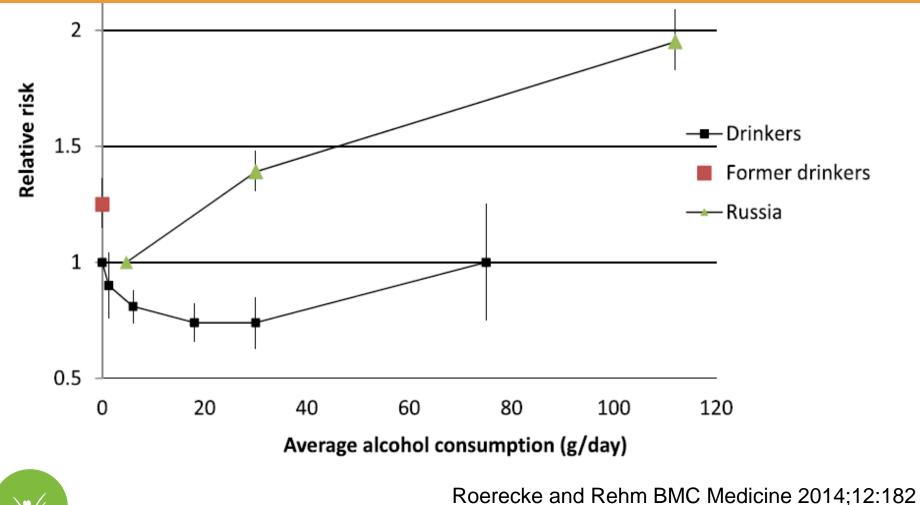
Alcohol Consumption Level over 4 y

6	116-11-1	Regular Alcohol Consumption (Drinks/Wk)			s/Wk)		
Covariates Adjusted for	Lifetime Nondrinker	Former Drinker Now Abstinent	Occasional Drinker*	<7	7-<14	14-<21	≥21
Age and sex	1.12 (0.92-1.36)	1.53 (1.27-1.84)	1.00	0.80 (0.66-0.97)	1.03 (0.81-1.32)	1.22 (0.87-1.70)	1.76 (1.27-2.43)
Fully adjusted	1.16 (0.95-1.43)	1.26 (1.05-1.53)	1.00	0.99 (0.82-1.21)	1.21 (0.91-1.61)	1.30 (0.88-1.91)	1.49 (0.97-2.29)

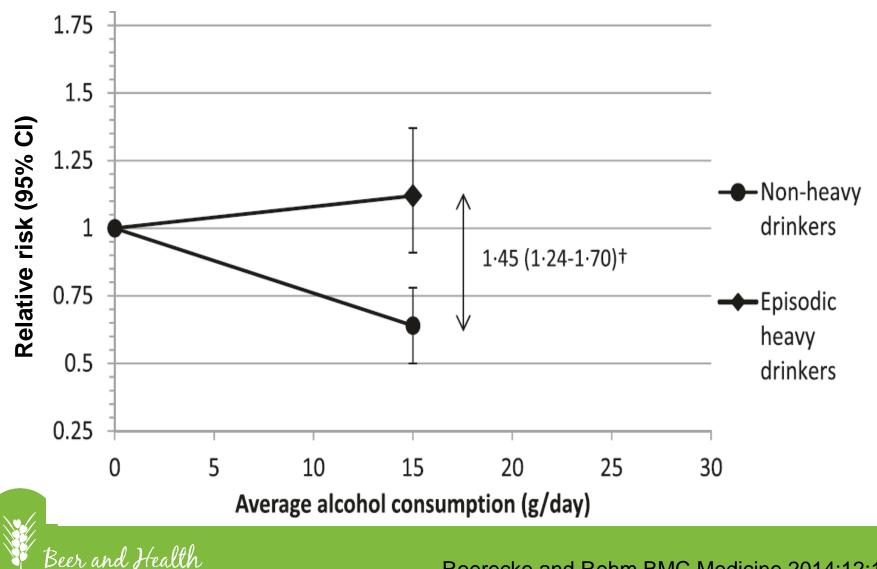
*Those who reported drinking on at least 1 occasion, but never more than less than once per week.

Adjusted for age, sex, income quintile, wealth quintile, whether born in the United States, race, religiosity, smoking, BMI, exercise, binge drinking, self-rated health, frequency of inpatient and emergency department or clinic visits, symptoms (shortness of breath, fatigue, and pain), diagnoses (cancer, lung disease, psychiatric disease, stroke, hypertension, diabetes, heart disease, and other diseases), mobility, activities of daily living, instrumental activities of daily living, and cognitive level.

Goulden R. Am J Med 2016;129:180-6


Inclusion criteria

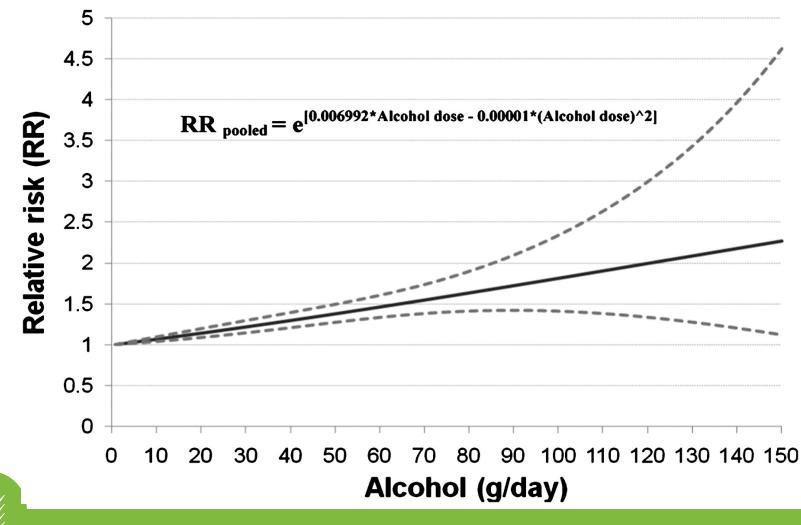
Included studies were original English-language research articles published in the peer-reviewed literature that quantified the relationship between all-cause mortality and alcohol consumption among human populations in cohort studies.


Stockwell et al. J Stud Alcohol Drugs 2016;77:185

Alcohol & CHD Death with Lifetime Abstainers as Reference

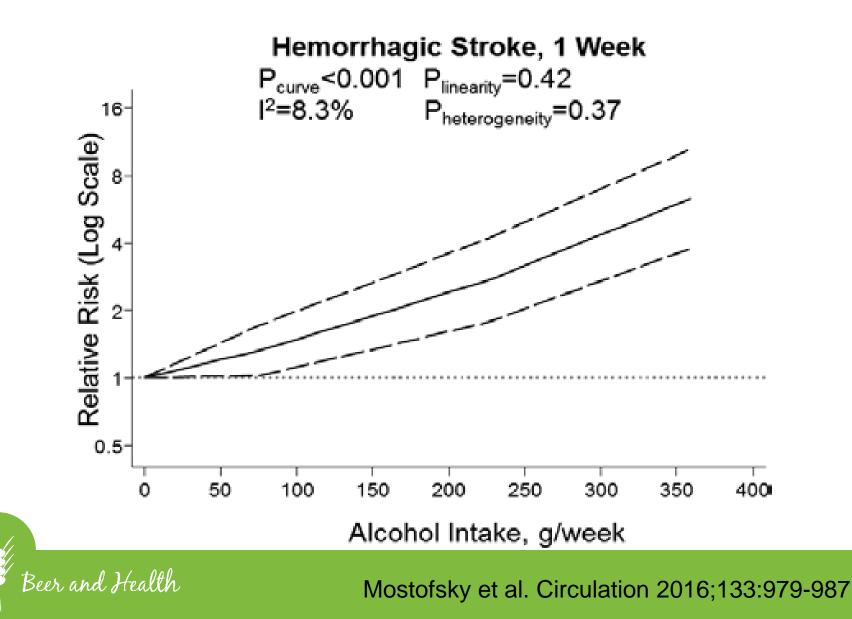
Beer and Health

Drinkers of <30 g/d vs. Lifetime Abstainers


Roerecke and Rehm BMC Medicine 2014;12:182

Alcohol & Breast Cancer Risk

Key J et al. Cancer Causes Control 2006;17:759-70


Alcohol and Colorectal Cancer

Beer and Health

Fedirko V et al. Ann Oncol 2011;22:1958-1972

Alcohol and Hemorrhagic Stroke

B. Limitations of Observational Studies

Potential Issues

1. Unmeasured & Residual Confounding

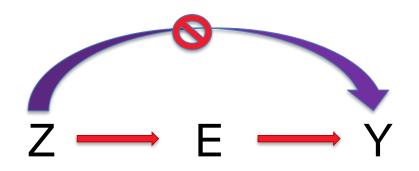
2. Reverse Causation

3. Information Bias

4. Misclassification

C. Mendelian Randomization (MR)

MR and Causal Inference


 Goal of MR is to minimize confounding and enhance study validity in observational studies where randomization may not be possible or may be unethical

 MR takes advantage of random assortment of chromosome during meiosis, and uses genetic loci that relate to the exposure (i.e., alcohol intake) as instrumental variables

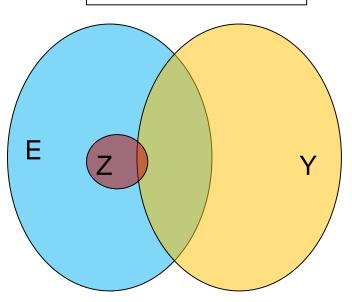
What is an Instrumental Variable (IV)?

- Suppose we want to examine the relation between beer drinking (E) and risk of heart attack (Y)
- Variable Z (ADH3) is an instrumental variable only if Z affects heart attack ONLY through beer drinking
- Z predicts beer drinking (E)

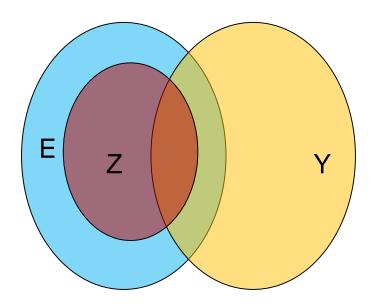
Two Assumptions for IV

- IV must be a predictor of the exposure variable (i.e., beer consumption)
- IV must be exogenous, that is, IV must be related to the outcome (heart attack) <u>only</u> through the exposure (beer intake)

Are these assumptions always satisfied in MR studies?


Challenges in IV Analysis

- Failure of exogeneity: IV influences outcome through variables that are different from the exposure
 - fbiases that are hard to quantify as they are unobserved
- IV is only a weak predictor of the exposure (beer) –
 weak instrument (F-statistic < 20)
- IV is a large sample procedure (even when assumptions are met, no guarantee to obtain unbiased results in a small sample study)



% of Exposure Variance Explained by IV

Panel A: R² <10%

Panel B: R² >40%

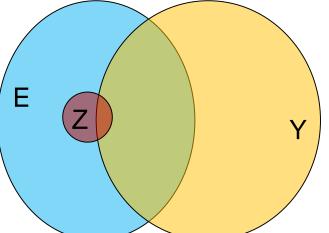
E= exposure

Y=outcome

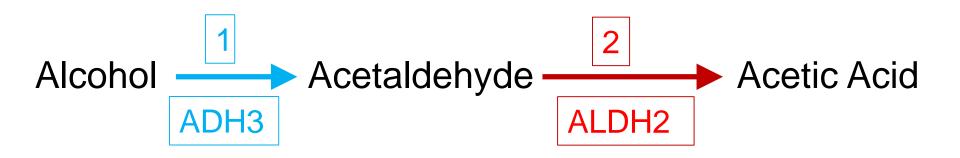
Z=Instrumental variable

Best Scenario

- R² >60% (IV explains most of variance of E)
- >80% of overlap between exposure and outcome explained
 - EZYY


E= exposure Y=outcome Z=Instrumental variable

More Realistic Scenario


- R² <10% (IV explains very little of the exposure variance)
- Very little of the explained exposure variance overlaps with outcome

E= exposure Y=outcome Z=Instrumental variable

Beer and CHD Example

- Alcohol dehydrogenase 3: γ_1 fast metabolizer and γ_2 slow metabolizer
- Aldehyde dehydrogenase 2: allele 2 for slow & 1 for fast metabolizer
- SNPs associated with genes encoding ADH3 and ALDH2 can be used as IVs to assess causal effects of beer on CHD

*Slow means ↑substrate levels

Beer and Health

ADH3 and CHD

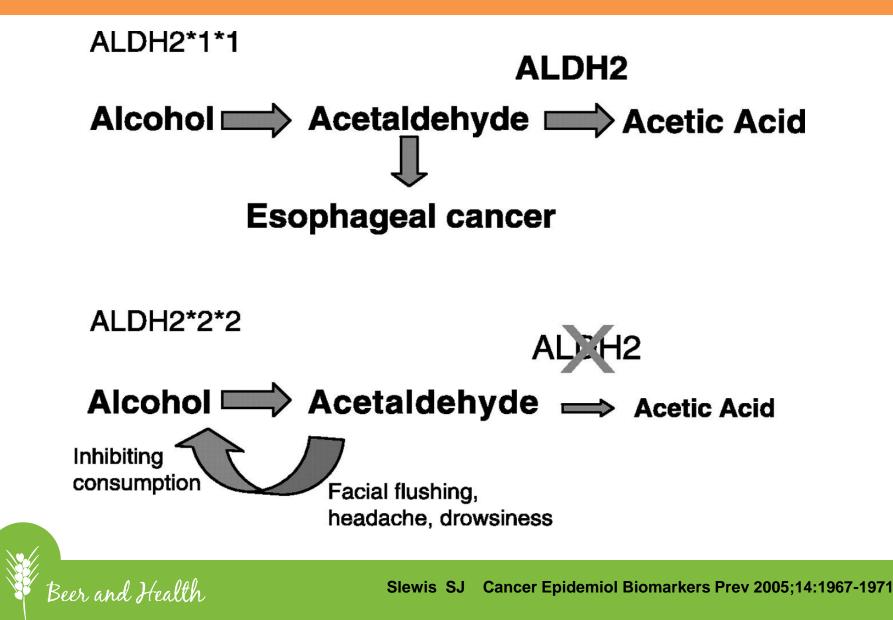
• If Beer protects against CHD, slow metabolizers for ADH3 (γ_2) should have lower risk of CHD, given the same amount of beer

• Is there evidence that slow metabolizers ($\gamma_2\gamma_2$ or $\gamma_1\gamma_2$ genotypes) have a lower risk of CHD than wild type ($\gamma_1\gamma_1$)?

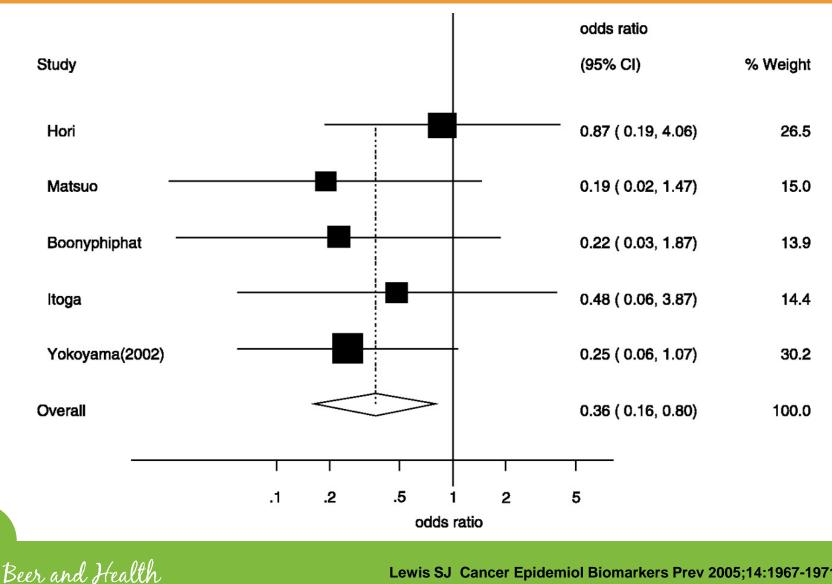
RR of MI by ADH3 Genotype

VARIABLE	ADH3 GENOTYPE				
	$\gamma_1\gamma_1$	$\gamma_1 \gamma_2$	$\gamma_2 \gamma_2$		
No. of subjects (%)					
Patients	161(41)	184 (46)	51 (13)		
Controls	279 (36)	361 (47)	130 (17)		
Relative risk (95% CI)†					
Matched	1.0^{+}_{+}	0.90(0.69 - 1.17)	0.72(0.50-1.05)	0.09	
Multivariate	1.0‡	0.81(0.61 - 1.09)	0.64(0.43 - 0.98)	0.03	
Multivariate, with adjustment		0.83(0.62 - 1.11)	0.65 (0.43-0.99)	0.04	
for alcohol consumption§	10 COON 90-	on a subhann feinige ann ann an subhfeirige			

*The P value is for the test for trend.



Hines LM et al. N Engl J Med 2001;344:549-555


ALDH2 and Cancer Risk

ALDH2, Alcohol, Acetaldehyde, & Esophageal Ca

RR of Esophageal Cancer ALDH2_22 vs. ALDH_11 Genotype

Lewis SJ Cancer Epidemiol Biomarkers Prev 2005;14:1967-1971

D. Caveats of MR

Population Stratification

Different ethnic groups may have different genotype frequencies and different disease risks

Adjust for population admixture

Linkage Disequilibrium (LD)

 There is an association between genetic variants due to small physical distance on the same chromosome

Variants in LD are inherited together

Genetic Canalization

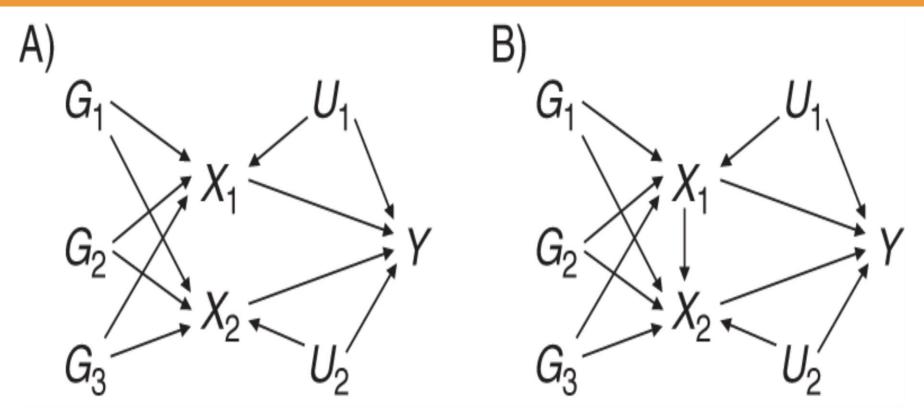
 Extent to which a phenotype allows conclusions about its genotype

 With ↑canalization, the genotype cannot be reliably predicted from the phenotype (phenotype is expressed regardless of genetic variation)

Genetic Penetrance

 A good IV requires well-defined and strong genetic risk factors with high penetrance

(<u>e.g., Low penetrance</u>: ALDH2 *2*2 subjects that tolerate alcohol intake)



Future Directions

Multivariable MR

Use of Pleiotropic Genetic Variants to Estimate Causal Effects

Causal directed acyclic graph illustrating multivariable MR in associations between variants G_1 , G_2 , and G_3 , risk factors X_1 and X_2 , and outcome Y. Confounders U_1 and U_2 are assumed to be unknown.

A) Risk factors are causally independent (no causal effects between X_1 and X_2)

B) risk factors are causally dependent (X₁ has a causal effect on X₂)

Beer and Health

Burgess S & Thompson. Am J Epidemiol. 2015;181:251-260

RCT of Moderate Alcohol Intake

The Moderate Alcohol and Cardiovascular Health Trial 2016 to 2021

- >NIAAA (U10AA025286-01: PI- Mukamal KJ)
- ➤ N= 7800 adults 50+y, 10-y CVD risk of 15+%
- ➤ 16 Centers planned worldwide
- Planned 6-y of follow up
- ➢ Randomized to 14 g/d of alcohol or abstention

> Outcomes: CVD, mortality, and type 2 diabetes

E. Concluding Remarks

- With a suitable IV & sample size, MR can help establish causal relation of alcohol intake with disease in observational studies, but MR is no panacea
- Violation of IV assumptions can lead to wrong inference & contribute to heterogeneity across study results of alcohol and health
- Many observational studies support beneficial health effects of beer and other alcoholic beverages when consumed in moderation

Thank You !

