

Polyphenols in beer: the role of xanthohumol and isoxanthohumoL

Rosa M. Lamuela University of Barcelona

THE 7TH EUROPEAN
BEER AND HEALTH SYMPOSIUM

Index

- What are polyphenols
- Polyphenols and health outcomes
- Polyphenols from beer
- Health effects of prenylflavonoids from beer

In 1991, key word: polyphenols
Only 23 papers about:

Antioxidant effects in vitro

Presence in food

Antitumoral properties

On September 26 2014, Key word: polyphenols 1318 papers in 12 months

Apoptosis

Arthritis

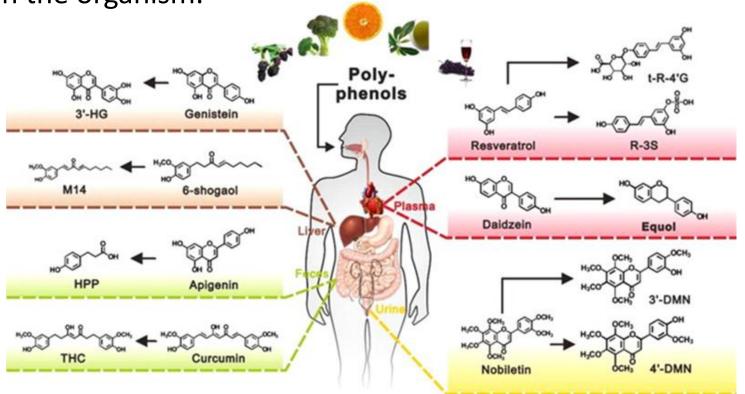
Inflammation

Effect on testosterone

Antibactericide

Cosmoceutical

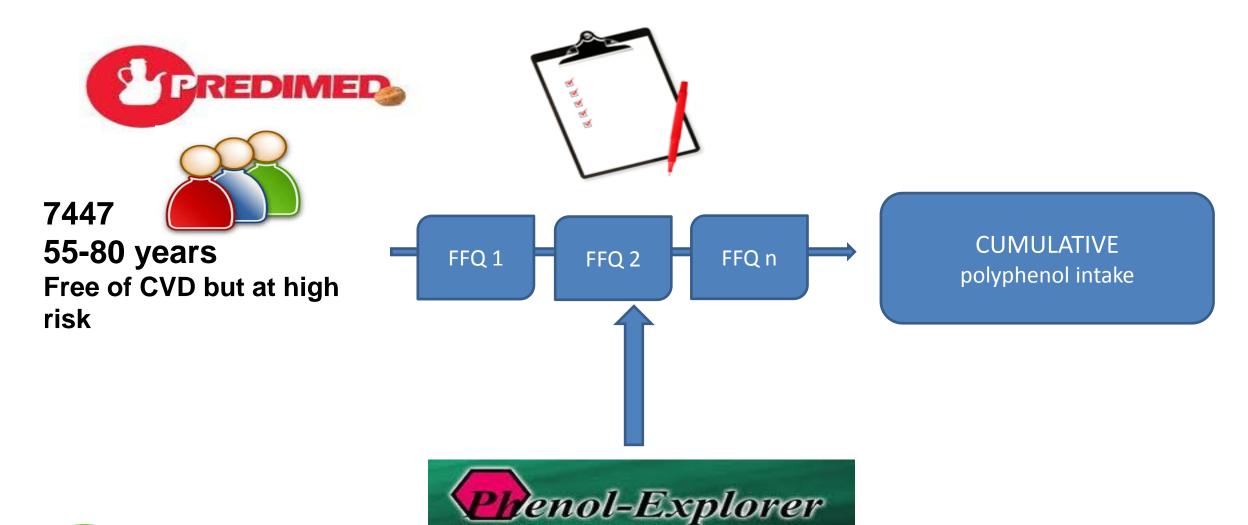
••



Polyphenols

Nowaday,s they are not considered nutrients however they are bioactive compounds, since they perform important physiological

functions in the organism.


Chiou, Y.-S. et al. 2014

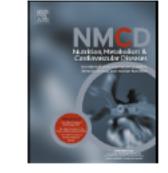
Index

- What are polyphenols
- Polyphenols and health outcomes
- Polyphenols from beer
- Health effects of prenylflavonoids from beer
- Isoxanthohumol reliable biomarker of beer consumption

Polyphenols and Cardiovascular Health

502 polyphenols in 452 foods

Polyphenol Intake and Cardiovascular



Nutrition, Metabolism & Cardiovascular Diseases (2014) xx, 1-9

Available online at www.sciencedirect.com

Nutrition, Metabolism & Cardiovascular Diseases

journal homepage: www.elsevier.com/locate/nmcd

Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study

A. Tresserra-Rimbau ^{a,b}, E.B. Rimm ^{c,d}, A. Medina-Remón ^{a,b},
M.A. Martínez-González ^{b,e}, R. de la Torre ^{b,f}, D. Corella ^{b,g}, J. Salas-Salvadó ^{b,h},
E. Gómez-Gracia ^{b,i}, J. Lapetra ^{b,j}, F. Arós ^{b,k}, M. Fiol ^{b,l}, E. Ros ^{b,m}, L. Serra-Majem ^{b,n},
X. Pintó ^{b,o}, G.T. Saez ^{b,p}, J. Basora ^{b,q}, J.V. Sorlí ^{b,r}, J.A. Martínez ^{b,s}, E. Vinyoles ^{b,t},
V. Ruiz-Gutiérrez ^{b,u}, R. Estruch ^{b,v}, R.M. Lamuela-Raventós ^{a,b,*} on behalf of the
PREDIMED Study Investigators

POLYPHENOLS AND CARDIOVASCULAR HEALTH

						0 1 /						
		Q1	Q2	(J 3	Q4	Q5	P for trend				
	Total polyphenols (mg/d)	562	701		300	917	1170					
	No. of CVD cases	66	49		58	49	51					
	No. of person years Age and sex adjusted	5312 1.00	6668 0.60 (0.38–		5905 0.62 (0.39–0.97)	6629 0.58 (0.36–0	.91) 5554 .91) 0.58 (0.36–0	0.93) 0.04				
	Model 2 ^b	1.00	0.57 (0.36–	•	0.60 (0.38–0.95)	0.54 (0.34–0		•				
Tab	le 2 Association be	tween	quintiles	of cum	ulative polyp	henol inta	ke (total and 1	main groups)	and incid	lent CVD in the PRE	DIMED study.	
			Q1	Q2		Q3		Q4		Q5	P for tre	nd
Tot	al polyphenols (m	g/d)	562	701		800		917		1170		
No.	of CVD cases		66	49		58		49		51		
No.	of person years		5312	6668	3	6905	5	6629		5554		
Age	and sex adjusted		1.00	0.60	(0.38 - 0.95)	a 0.62	(0.39 - 0.97)	0.58 (0.36	-0.91)	0.58 (0.36-0.93)	0.04	
Mo	del 2 ^b		1.00	0.57	(0.36 - 0.92)	0.60	(0.38 - 0.95)	0.54 (0.34	-0.87)	0.51 (0.30-0.84)	0.02	
Mo	del 3 ^c		1.00	0.60	(0.38 - 0.97)	0.67	(0.42-1.07)	0.59 (0.37	-0.96)	0.54 (0.33-0.91)	0.04	
	No. of person years Age and sex Model 2	5341 1.00 1.00	6541 0.64 (0.40– 0.94 (0.46–	1.04)	6640 0.81 (0.52–1.27) 1.17 (0.55–2.47)	6491 0.65 (0.42–1 0.96 (0.46–2						_
Lig	nans (mg/d)		0.44	0.57		0.67		0.77		0.94		
No.	of cases		69	57		53		44		50		
No.	of person years		4625	6122		6899		6892		6530		
Age	e and sex		1.00	0.61	(0.40 - 0.95)	0.55 (0.36-0.86)	0.57 (0.35-0).91)	0.51 (0.31-0.84)	0.004	
Mo	del 2		1.00	0.65	0.41-1.01)	0.55 (0.35-0.87)	0.61 (0.37-0).99)	0.50 (0.29-0.85)	0.007	
Mo	del 3		1.00	0.64	0.41 - 0.99	0.54 (0.34-0.85)	0.60 (0.36-0).97)	0.51 (0.30-0.86)	0.007	

0.67 (0.40-1.11)

0.63 (0.38-1.05)

0.74 (0.43-1.26)

0.06

0.02

0.14

0.75(0.46-1.21)

0.70 (0.43-1.15)

0.84(0.51-1.38)

Age and sex

Model 2

Model 3

0.88(0.55-1.39)

0.86 (0.53-1.37)

0.94 (0.58-1.53)

Table 2 Association between quintiles of cumulative polyphenol intake (total and main groups) and incident CVD in the PREDIMED study.

1.00

1.00

1.00

1.00 (0.65-1.55)

0.97 (0.62-1.53)

1.08 (0.69-1.71)

^a HR (95% CI).

^b Additionally adjusted for smoking, BMI, alcohol, physical activity, family history of CVD, aspirin use, antihypertensive drugs, cardiovascular drugs, diabetes status, and total energy intake.

^c Additionally adjusted for intake of protein, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol.

FLAVONOIDS AND CARDIOVASCULAR HEALTH

Table 2. The relationship	n between CVD and cumulative flavoncide	cubelaceae intaka (in quintila	s) in participants from the PREDIMED study.
lable 3 The relationship	p between CVD and cumulative havonoids	s subciasses intake (in quintile	s) in participants from the PREDIVIED study.

Flavonoids	Q1	Q2	Q3	Q4	Q5	P for trend
Anthocyanins (mg/d)	11.8	23.6	32.8	45.7	74,6	
No. of cases	69	57	52	43	52	
No. of person years	5375	6347	6589	6963	5795	

Anthocyanins (mg/d)	11.8	23.6	32.8	45.7	74.6	
No. of cases	69	57	52	43	52	
No. of person years	5375	6347	6589	6963	5795	
Age and sex	1.00	0.95 (0.65-1.40) ^a	0.62 (0.41-0.94)	0.52 (0.34-0.80)	0.60 (0.39-0.90)	0.004
Model 2 ^b	1.00	1.15 (0.74-1.79)	0.82 (0.51-1.33)	0.65 (0.39-1.09)	0.62 (0.36-1.06)	0.03
Model 3 ^c	1.00	1.18 (0.76-1.84)	0.85 (0.52-1.38)	0.67 (0.40-1.11)	0.67 (0.39-1.13)	0.05
Dihydrochalcones (mg/d)	0.8	1.8	2.6	3.5	5.8	
No. of cases	47	59	55	57	55	
No. of person years	5036	6268	7563	5524	6677	
Age and sex	1.00	1.11 (0.73-1.67)	0.92 (0.60-1.40)	0.96 (0.62-1.48)	0.62 (0.39-0.99)	0.02
Model 2	1.00	1.25 (0.78-1.99)	0.90 (0.55-1.46)	0.92 (0.56-1.52)	0.61 (0.35-1.05)	0.02
Model 3	1.00	1.24 (0.78-1.99)	0.92 (0.56-1.50)	0.95 (0.57-1.57)	0.63 (0.36-1.08)	0.03

Model 2	1.00	0.65 (0.41-1.02)	0.70 (0.44-1.09)	0.57 (0.36-0.91)	0.36 (0.20-0.63)	0.0004
Model 3	1.00	0.70 (0.44-1.10)	0.77 (0.49-1.21)	0.66 (0.41-1.05)	0.40 (0.23-0.72)	0.003
Flavanones (mg/d)	28	78	113	157	247	
NI C	=0	F 1	40		co	

					110		
ı	Flavanols (mg/d)	90	129	158	192	263	
	No. of cases	69	51	59	59	35	
	No. of person years	4841	6409	7058	6860	5900	
	Age and sex	1.00	0.64 (0.43-0.94)	0.65 (0.44-0.95)	0.55 (0.37-0.82)	0.33 (0.21-0.53)	< 0.0001
	Model 2	1.00	0.65 (0.41-1.02)	0.70 (0.44-1.09)	0.57 (0.36-0.91)	0.36 (0.20-0.63)	0.0004
ı	Model 3	1.00	0.70 (0.44-1.10)	0.77 (0.49-1.21)	0.66 (0.41-1.05)	0.40 (0.23-0.72)	0.003

Model 3	1,00	0.94 (0.56-1.56)	1,37 (0.83-2.27)	1,30 (0,79-2,12)	1.07 (0.64-1.80)	0.72
Flavonols (mg/d)	56	74	88	101	124	
No. of cases	69	57	55	40	52	
No. of person years	5608	6961	6668	6179	5652	
Age and sex	1.00	0.85 (0.58-1.25)	0.63 (0.42-0.95)	0.44 (0.28-0.70)	0.56 (0.35-0.88)	0.002
Model 2	1.00	0.79 (0.51-1.22)	0.69 (0.44-1.09)	0.48 (0.28-0.80)	0.58 (0.34-0.98)	0.02
Model 3	1.00	0.84 (0.54-1.31)	0.74 (0.46-1.17)	0.53 (0.31-0.90)	0.69 (0.40-1.19)	0.08

a HR (95% CI).

^c Model 3 - model 2 plus intake of proteins, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol,

b Model 2 – age, sex, smoking, BMI, alcohol, energy, physical activity, family history of CVD, aspirin use, antihypertensive drugs, cardiovascular drugs, and diabetes status.

PHENOLIC ACIDS AND CARDIOVASCULAR HEALTH

Table 4 The relationship between CVD and cumulative phenolic acids subclasses intake (in quintiles) in participants from the PREDIMED study.

Phenolic acids	Q1	Q2	Q3	Q4	Q5	P for trend
Hydroxybenzoic acids (mg/d)	6.9	12.9	17.8	24,1	36.1	
No. of cases	69	62	47	55	40	
No. of person years	5398	6603	6734	6853	5480	
Age and sex	1.00	$0.80 (0.54-1.17)^a$	0.60 (0.40-0.90)	0.54 (0.36-0.82)	0.46 (0.29-0.71)	0.0003
Model 2 ^b	1.00	0.82 (0.52-1.29)	0.65 (0.40-1.06)	0.59 (0.36-0.97)	0.37 (0.20-0.66)	0.0006
Model 3 ^c	1.00	0.91 (0.57-1.43)	0.74 (0.46-1.22)	0.73 (0.44-1.21)	0.47 (0.26-0.86)	0.02
Hydroxycinnamic acids (mg/d)	138	207	252	316	422	
No. of cases	61	50	42	59	61	
No. of person years	5632	6486	6869	6914	5167	
Age and sex	1.00	0.80 (0.53-1.20)	0.55 (0.35-0.87)	0.92 (0.62-1.36)	1.08 (0.72-1.63)	0.40
Model 2	1.00	0.81 (0.51-1.29)	0.57 (0.34-0.96)	0.91 (0.58-1.42)	0.99 (0.62-1.58)	0.71
Model 3	1.00	0.79(0.49-1.25)	0.58 (0.35-0.97)	0.86 (0.55-1.36)	0.93 (0.58-1.49)	0.93
Other phenolic acids (mg/d)	0.1	2.5	4.6	8.6	17.9	
No. of cases	58	66	47	62	40	
No. of person years	5100	5225	6571	7787	5385	
Age and sex	1.00	1.11 (0.75-1.64)	0.69 (0.45-1.08)	0.79 (0.52-1.21)	0.73 (0.46-1.14)	0.10
Model 2	1.00	1.31 (0.83-2.09)	0.75 (0.44-1.28)	0.88 (0.54-1.42)	0.74 (0.45-1.24)	0.11
Model 3	1.00	1.39 (0.87-2.22)	0.82 (0.48-1.39)	0.92 (0.57-1.51)	0.82 (0.49-1.39)	0.19

а HR (95% СГ).

b Model 2 — age, sex, smoking, BMI, alcohol, energy, physical activity, family history of CVD, aspirin use, antihypertensive drugs, cardiovascular drugs, and diabetes status.

^c Model 3 - model 2 plus intake of proteins, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol.

Tresserra-Rimbau et al. BMC Medicine 2014, 12:77 http://www.biomedcentral.com/1741-7015/12/77

RESEARCH ARTICLE

Open Access

Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial

Anna Tresserra-Rimbau^{1,2}, Eric B Rimm³, Alexander Medina-Remón^{2,17}, Miguel A Martínez-González^{2,4}, M Carmen López-Sabater^{1,2}, María I Covas^{2,5}, Dolores Corella^{2,6}, Jordi Salas-Salvadó^{2,7}, Enrique Gómez-Gracia^{2,8}, José Lapetra^{2,9}, Fernando Arós^{2,10}, Miquel Fiol^{2,11}, Emili Ros^{2,12}, Lluis Serra-Majem^{2,13}, Xavier Pintó^{2,14}, Miguel A Muñoz^{2,15}, Alfredo Gea^{2,4}, Valentina Ruiz-Gutiérrez^{2,16}, Ramón Estruch^{2,17}, Rosa M Lamuela-Raventós^{1,2*} and on behalf of the PREDIMED Study Investigators

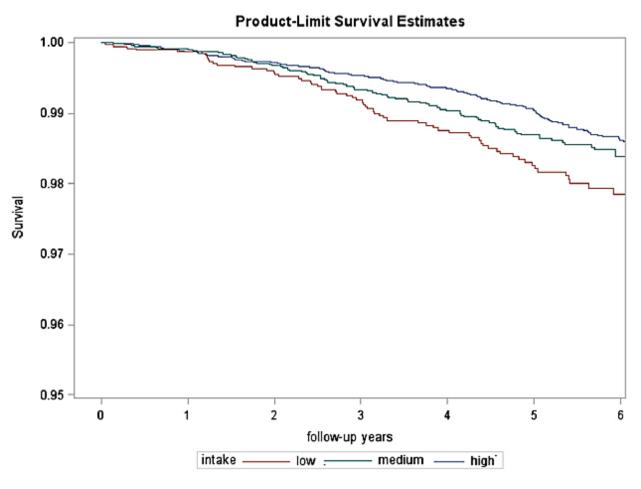
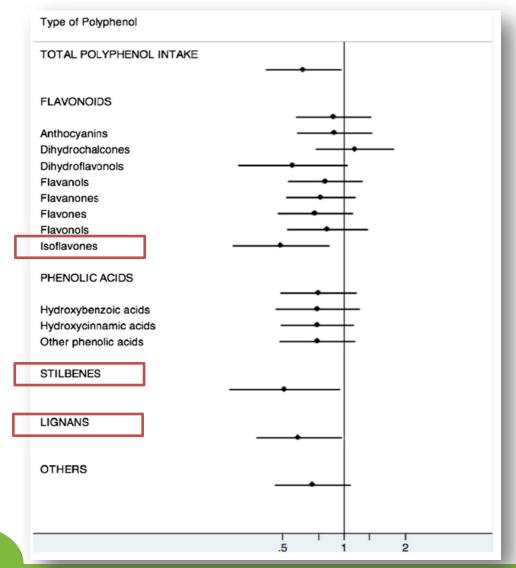


Table 2 Cox proportional hazard ratios for total mortality according to quintiles of cumulative total polyphenol intake

	Quintiles of cumulative intake of total polyphenols, mg/d							
	Q1 (535)	Q2 (700)	Q3 (800)	Q4 (917)	Q5 (1170)	<i>P</i> -trend		
No. of deaths	88	62	52	63	62			
No. of person-years	5,505	6,599	6,767	6,559	5,638			
Age- and sex-adjusted HR (95% CI)*	1.00	0.65 (0.44 to 0.95)	0.55 (0.37 to 0.82)	0.73 (0.50 to 1.06)	0.66 (0.44 to 0.98)	0.12		
Multivariable-adjusted HR (95% CI) [†]	1.00	0.68 (0.46 to 1.01)	0.60 (0.39 to 0.90)	0.75 (0.51 to 1.12)	0.60 (0.39 to 0.91)	0.07		
Additionally adjusted HR (95% CI) [‡]	1.00	0.71 (0.48 to 1.05)	0.62 (0.41 to 0.95)	0.79 (0.53 to 1.17)	0.63 (0.41 to 0.97)	0.12		

HR, Hazard ratio; CI, Confidence interval.

Total polyphenol intake was significantly associated with a decrease (almost 40%) in all-cause mortality, after adjusting for all confounders.


The dose-response trend suggested an L-shaped relationship.

^{*}Analyses were stratified by sex, recruitment center and intervention group.

[†]The multivariable HR has been additionally adjusted for age (<60, 60 to 64.9, 65 to 69.9, 70 to 74.9, >/=75 years), smoking (never, past and current: cigarettes (<5, 5 to 19, >20 per day) or cigars and pipes (<3, 3 to 6, >6 per day)), BMI (<25, 25 to 29.9, or >/=30 Kg/m²), baseline diabetes, alcohol (0, 0.1 to 14.9, 15 to 29.9, >/=30 g/day), total energy intake (continuous variable), physical activity (continuous variable), family history of CVD or cancer, aspirin use, antihypertensive drug use, use of cardiovascular medication, use of oral hypoglycaemic agents, insulin, other medication.

[‡]This model has been additionally adjusted for intake of protein, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids and cholesterol (all as continuous variables).

Hazard ratios (95% CI) of total mortality for the highest vs. lowest quintiles of polyphenol intake.

Isoflavones

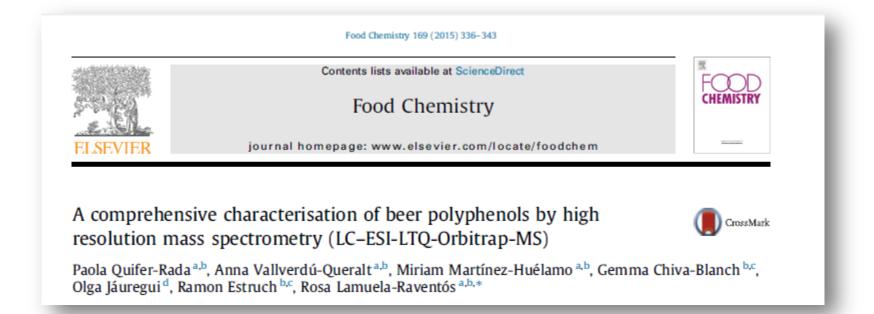
HR 0.49; CI 0.28 to 0.84; P-trend=0.009

Stilbenes

HR 0.48; CI 0.25 to 0.91; P-trend=0.04

Lignans

HR 0.60; CI 0.37 to 0.95; P-trend=0.03



Index

- What are polyphenols
- Polyphenols and health outcomes
- Polyphenols from beer
- Health effects of prenylflavonoids from beer

Beer Polyphenols by LC-LTQ-Orbitrap MS

- We analyzed the beer polyphenolic profile by High Ressolution Mass Spectrometry (LC-LTQ-Orbitrap)
- 3 types of Beer: Marzen Bier, Pilsen and Lager.
- Full Scan Mode and Tandem MS/MS experiments with accurate mass measurements of the ions and the fragments
- 47 phenolic compounds were detected, 7 of them were reported for the first time

Malt Polyphenols

Hydroxybenzoic acids

Gallic acid

Protocatechuic acid-O-hexoside

Dihydroxybenzoic acid

Protocatechuic acid

Hydroxybenzoic acid

Vanillic acid

Hydroxyphenylacetic acids

Hydroxyphenylacetic acid

Alkylmethoxyphenols

4-vinylguaiacol

Hydroxycinnamic acids

Caffeic acid O-hexoside

Caffeic acid

1-caffeoylquinic acid

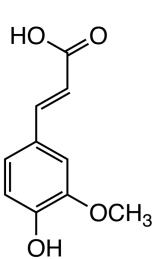
3-caffeoylquinic acid

4-caffeoylquinic acid

5-caffeoylquinic acid

Coumaric acid O-hexoside

Feruoylquinic acid


Sinapic acid-*O*-hexoside

Sinapic acid

Ferulic acid

polyphenols come from malt

70-80% of the beer

Malt Polyphenols

Flavanols

Catechin-O-hexoside
Catechin-O-dihexoside
Epicatechin

HO
OH
OH

Flavonols

Quercetin-3-*O*-glucoside

Kaempferol-*O*-hexoside

3,7-dimethylquercetin

HO

OH

OH

Flavones

Apigenin-*C*-hexoside-*O*-hexoside Apigenin-*C*-hexoside-pentoside Apigenin-*C*-hexoside

Hop Polyphenols

α -acids and β -acids

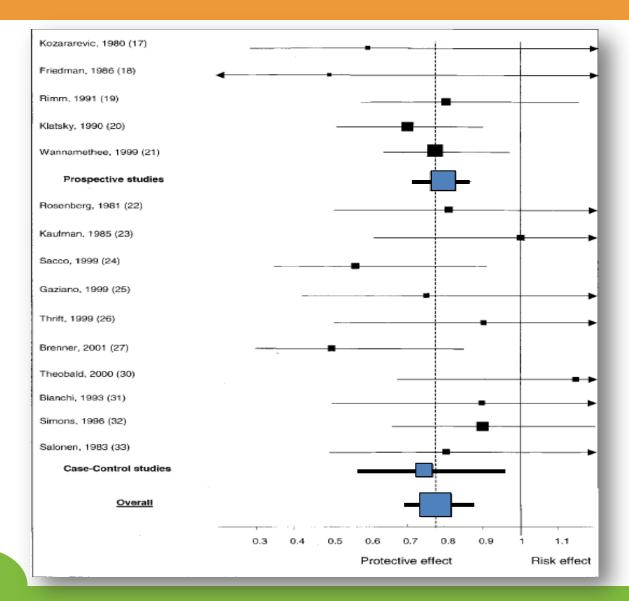
co-Humulone
ad-Humulone
n-Humulone
Iso-α-cohumulone
Iso-α-adhumulone
Iso-α-nhumulone
Lupulone

Prenylflavanoids

Isoxanthohumol
Xanthohumol
Desmethylxanthohumol
8-prenylnaringenin
6-prenylnaringenin

30-20% of the beer polyphenols come from hops

Polyphenol Intake from one Drink



Beer and Wine: a Metanalisi

Reduction of cardiovascular risk

Wine: −32%

● Beer: -22%

Circulation 2002

Index

- What are polyphenols
- Polyphenols and health outcomes
- Polyphenols from beer
- Health effects of prenylflavonoids from beer

Prenylflavanoids

Xanthohumol (XN)

95% of the prenylflavanoids found in hops are xanthohumol, desmethylxanthohumol, and 3-geranylchalconenaringenina. (Stevens et al, 1999)

Isoxanthohumol (IX)

High content in isoxanthohumol (prenylflavanone) and low content in xanthohumol (Stevens et al 1999)

8-Prenylnaringenin (8-PN)

Isoxantohumol is converted to 8-prenylnaringenin by an *O*-desmethylation catalyzed by gut microbiota. (Hanske L et al 2010, Possemiers S et al 2005)

Beer and Health

Biological Activity of Beer Prenylflavanoids

8-prenylnaringenin

• Most potent phytostrogen known untill date. It showed similar binding characteristics to ER α and ER β *in vitro*. The oestrogenic activity of 8-prenylnaringenin was greater than that of established phyto-oestrogens such as coumestrol, genistein and daidzein. (Milligan et al. 2000)

Owing to this phytoestrogenic activity, 8PN has been proposed as a treatment for menopausal symptoms,

such as hot flashes and osteoporosis

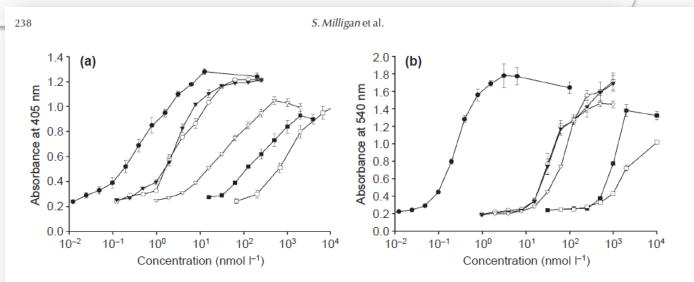


Fig. 2. Relative oestrogenic activity of oestradiol (●), 8-prenylnaringenin (semi-synthetic; \bigcirc), 8-prenylnaringenin (natural; \blacktriangledown) and other phyto-oestrogens (coumestrol (\triangledown), genistein (\blacksquare), daidzein (\square)) in (a) Ishikawa Var I cells and (b) yeast screen bearing the human oestrogen receptor. Results are means \pm SEM; n = 6 wells per point. Where no error bars are visible, the errors were smaller than the symbols.

Biological Activity of Beer Prenylflavanoids

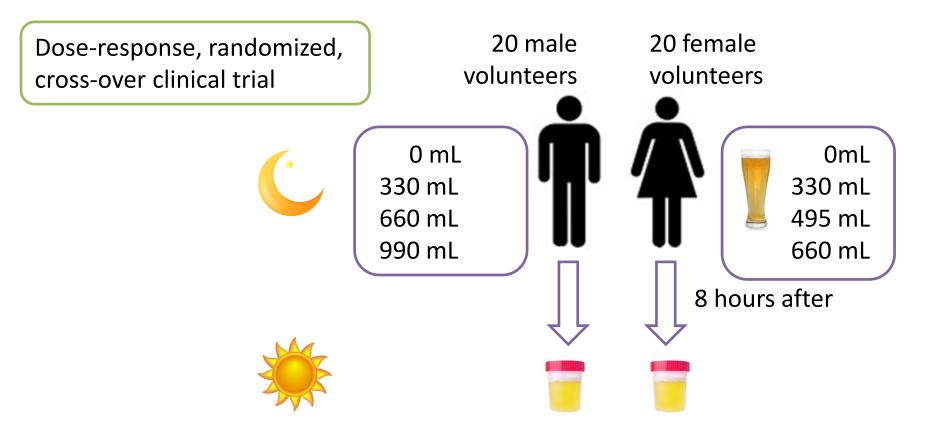
Xantohumol and Isoxanthohumol

- Xanthohumol and isoxanthohumol have shown weak or no estrogenic activity.
- IX is considered to be a source of 8-prenylnaringenin, becauseit is metabolized to 8-prenylnaringenin in the intestinal tract by gut microbiota.

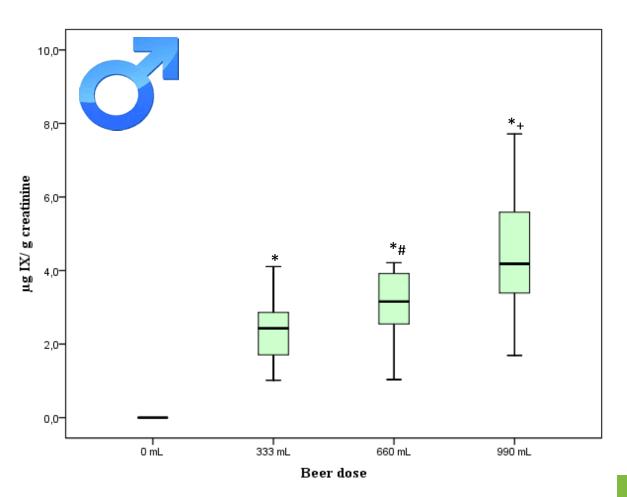
Urinary Isoxanthohumol as a Biomarker of Beer Consumption

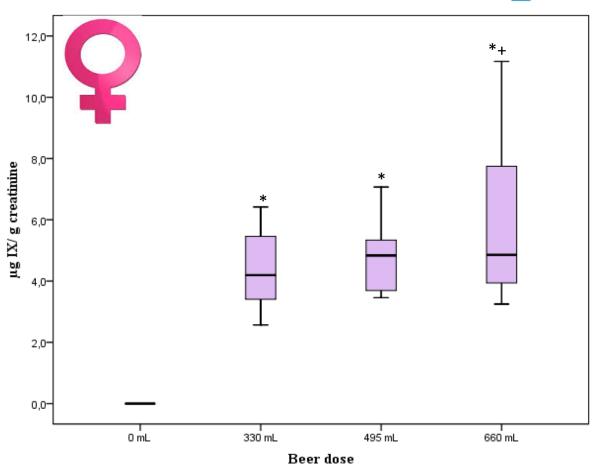
J. Nutr. 144: 484-488, 2014.

Urinary Isoxanthohumol Is a Specific and Accurate Biomarker of Beer Consumption 1-3

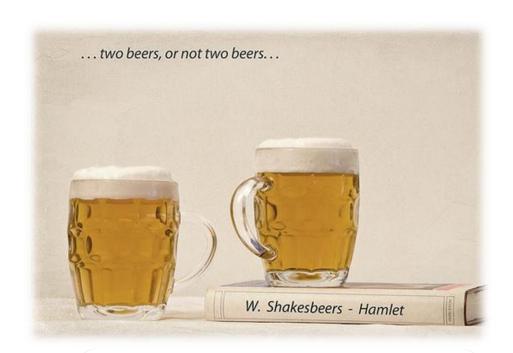

Paola Quifer-Rada,^{4,5} Miriam Martínez-Huélamo,^{4,5} Gemma Chiva-Blanch,^{5,6} Olga Jáuregui,⁷ Ramon Estruch,^{5,6} and Rosa M. Lamuela-Raventós^{4,5}*

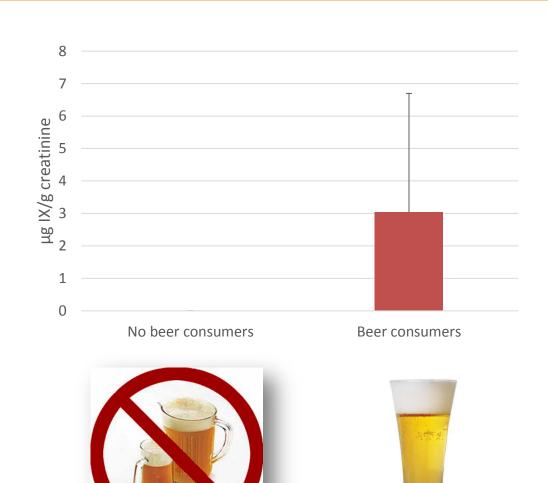
⁴Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona, Spain; ⁵CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain; and ⁶Department of Internal Medicine, Hospital Clínic, Institute of Biomedical Investigation August Pi i Sunyer, and ⁷Scientific and Technological Center, University of Barcelona, Barcelona, Spain


Urinary Isoxanthohumol as a Biomarker of Beer Consumption



5 days washout period before each intervention


Urinary excretion of Isoxanthohumol in male (A) and female (B) volunteers 8 hours after the intake of different volums of beer



In Free Living Population in PREDIMED

IX is really a good boomarker that can be used in epidemilogical studies to evaluate beer health outcomes.

Conclusions

- Polyphenols consumption decrease all cause of mortality and CVD
- Beer has been shown to be a good source of polyphenols and it is one of the main food contributor to hydroxybenzoic acid intake in the European Prospective Investigation into Cancer and Nutrition cohort study.
- High intake of hydoxibenzoics decrease cardiovascular risk by 53% in the PREDIMED population
- IX is a good biomarker that may be used in epidemiological studies to evaluate beer health outcomes

We would like to thank:

Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición

POLYPHENO

Biomèdiques

THE 7TH EUROPEAN

Visit our web site:

Group director Rosa Mª Lamuela Raventós

Board Committee Ramón estruch Riba

http//www.polyphenolresearch.com

Predoctoral researchers

Miriam Martínez Mariel Colman Gemma Sasot Naiara Orrego

Anna Tresserra Paola Quifer Guao Xiao Hui Ana Barrionuevo Anna Creus

Collaborators

Mónica Vázquez Montse Illán Xavier Torrado

