Non-alcoholic beer and respiratory tract health: incidence and inflammation reduction

7<sup>th</sup> European Beer and Health Symposium

Ass. Prof. Johannes Scherr, MD



Beer and Health

THE 7<sup>TH</sup> EUROPEAN BEER AND HEALTH SYMPOSIUM



## Topics

- Effects of prolonged & strenuous exercise (as a model for inflammation-associated

illnesses)

- Inflammation & infection
- Cardiovascular system
- Effects of the polyphenols in (non-alcoholic) beer
  - Inflammation & infection of the respiratory tract system
  - Cardiovascular & rheological effects



## Background inflammation / infection

- Prolonged and strenuous exercise results in
- a) an increase in biomarkers representing pro-inflammatory activity



Scherr et al., Med. Sci. Sports Exerc. 2011, 1819–1827

## Background inflammation / infection

Prolonged and strenuous exercise results in

Beer and Health

- a) an increase in biomarkers representing pro-inflammatory activity
- b) an immune dysfunction and an elevated incidence/susceptibility of infections (especially upper respiratory tract infections (URTI))



Scherr et al., Med. Sci. Sports Exerc. 2011, 1819–1827 Scherr J et al., Med. Sci. Sports Exerc., 2012: 18–26 Nieman DC et al., Med Sci Sports Exerc., 1994: 128-139

- Prolonged and strenuous exercise results in
- a) an increase in biomarkers representing pro-inflammatory activity
- b) an immune dysfunction and an elevated incidence/susceptibility of infections (especially upper respiratory tract infections (URTI))
- c) an increase in biomarkers representing myocardial damage/injury



- Prolonged and strenuous exercise results in
- a) an increase in biomarkers representing pro-inflammatory activity
- b) an immune dysfunction and an elevated incidence/susceptibility of infections (especially upper respiratory tract infections (URTI))
- c) an increase in biomarkers representing myocardial damage/injury
- d) discussed underlying mechanisms resulting in an increase in elevated myocardial biomarkers:
  - 1. oxidative stress or inflammation (in the meaning of inflammatory cardiomyopathy)
  - 2. Injury of myocytes caused by ischemia
    - I. reversible
    - II. Irreversible (leading to necrosis)
  - 3. Impaired renal clearance
  - 4. Stretch-mediated liberation (due to enhanced wall stress)



- Prolonged and strenuous exercise results in
- a) an increase in biomarkers representing pro-inflammatory activity
- b) an immune dysfunction and an elevated incidence/susceptibility of infections (especially upper respiratory tract infections (URTI))
- c) an increase in biomarkers representing myocardial damage/injury
- d) discussed underlying mechanisms resulting in an increase in elevated myocardial biomarkers:
  - 1. oxidative stress or inflammation (in the meaning of inflammatory cardiomyopathy)
  - 2. Injury of myocytes caused by ischemia
    - I. reversible
    - II. Irreversible (leading to necrosis)
  - 3. Impaired renal clearance
  - 4. Stretch-mediated liberation (due to enhanced wall stress)





Scherr et al, Med. Sci. Sports Exerc., 2011: 1819–1827

## Daily total polyphenol intake

- Measured in gallic acid equivalent (GAE)
- 48.3mg GAE/d in Brazil <sup>1</sup> (??)
- 783.9  $\pm$  31.7 mg GAE /d in Portugal <sup>2</sup>
- 1 g GAE/d <sup>3</sup>
- $\rightarrow \sim$  800-900 mg GAE/d

Beer and Health

Total phenol content in beer of 500-1000 mg GAE/L<sup>4</sup>

| Foodstuff   |                     | Total phenols <sup>5</sup>       |  |
|-------------|---------------------|----------------------------------|--|
|             |                     | Folin-Ciocalteu assay (GAE [mg]) |  |
| Vegetables  | Potato, 200 g       | 57                               |  |
|             | Tomato, 100 g       | 37                               |  |
|             | Onion, 20 g         | 18                               |  |
| Fruits      | Apple, 200 g        | 440                              |  |
|             | Cherry, 50 g        | 276                              |  |
| Other foods | Dark chocolate, 20g | 168                              |  |
| Beverages   | Red wine, 125 ml    | 225                              |  |
|             | Coffee, 200ml       | 179                              |  |
|             | Black tea, 200 ml   | 200                              |  |

#### <sup>1</sup> Faller et al, Rev Saúde Pública 2009

<sup>2</sup> Pinto P, Int J Food Sci Nutr, 2013: 1022-1029
 <sup>3</sup> Kuhnau J. World Rev Nutr Diet. 1976:117–91
 <sup>4</sup> Leupold, G., Brauwissenschaft 1981: 205–210
 <sup>5</sup> Scalbert A, J. Nutr. 2000: 2073S–2085S

# Polyphenols & infections (URTI)



## Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial

Serena A. Heinz<sup>a</sup>, Dru A. Henson<sup>a</sup>, Melanie D. Austin<sup>b</sup>, Fuxia Jin<sup>b</sup>, David C. Nieman<sup>b,\*</sup>

### Aim:

Investigation of the influence of two quercetin doses (500 and 1000 mg/day) compared to placebo on upper respiratory tract infection (URTI) rates in a community group (N= 1002) of subjects varying widely in age (18–85 years)



## Polyphenols & infections (URTI)



#### Heinz et al., Pharmacological Research 2010: 237–242

Be-MaGIC: Beer, Marathon, Genetics, Inflammation and the Cardiovascular System

## Be-MaGIC-Trial: Material & Methods

- n = 277 marathon (MT) runners (3, age 42±9J., BMI 23,7±2,1kg/m<sup>2</sup>, finishing time 3h 51min ± 30min)
- supplementation with a mixture of polyphenols (= non-alcoholic beer= verum (V), 32,6±0,1 mg Gallic acid equivalents (GAE)/100 g)) compared to placebo (except for polyphenols identical composition; also taste, color and foaming)
  - Composition of the polyphenol: catechin (4.7 mg GAE /100g), epicatechin (0.8 mg GAE /100g), procyanidin B-3 (3.3 mg GAE /100g), other proanthocyanidins acid (0.5 mg GAE /100g), vanillic acid (1.5 mg GAE /100g), syringa acid (4.2 mg GAE /100g), p-cumaracid (1.5 mg GAE /100g), ferulic acid (5.2 mg GAE /100g), sinapinic acid (0.4 mg GAE /100g), other hydroxycinnamic acids (0.9 mg GAE /100g), isoxanthohumol (3.9 mg GAE /100g), and other flavonols (5.4 mg GAE /100g)



## Study design

 n = 277 marathon (MT) runners (♂, age 42±9J., BMI 23,7±2,1kg/m², finishing time 3h 51min ± 30min)



Statistical analysis of a Full-Analysis-Set (FAS; participants, who finished the marathon successfully) & Per-Protocol (PP)-Gruppe (FAS criteria & ingestion of ≥ 1L study beverage /d (≙ at least 326 mg GAE)).

Beer and Health

## Flow chart particpants Be-MaGIC trial



<sup>5</sup> Intersection is possible due to multi-referencing

# Study cohort – baseline (PP)

|                                                                     | Intervention Group $(n = 58)$ | Control Group $(n = 63)$ | Р    |
|---------------------------------------------------------------------|-------------------------------|--------------------------|------|
| Fluid intake                                                        |                               |                          |      |
| Study beverage (L·d <sup>-1</sup> )                                 | $1.22 \pm 0.16$               | $1.28 \pm 0.26$          | 0.18 |
| Other beverage (L·d <sup>-1</sup> )                                 | $1.49 \pm 0.83$               | 1.72 ± 0.93              | 0.20 |
| Anthropometry                                                       |                               |                          |      |
| Age (yr) (median (IQR))                                             | 44 (36–51)                    | 42 (35–49)               | 0.37 |
| Body mass index (kg·m <sup>-2</sup> )                               | 23.4 ± 2.1                    | 23.8 ± 2.1               | 0.24 |
| Total body fat (%)                                                  | 15.5 ± 4.0                    | $14.6 \pm 4.5$           | 0.22 |
| Mean blood pressure, systolic/diastolic (mm Hg)                     | 126 ± 11/82 ± 7               | 127 ± 12/83 ± 7          | 0.91 |
| Marathon run                                                        |                               |                          |      |
| Marathon time (h:min)                                               | 3:43:19 ± 0:24:20             | 3:49:18 ± 0:32:24        | 0.41 |
| Minimum/maximum race time (h:min:s)                                 | 2:53:50/4:42:34               | 2:51:01/5:25:40          | _    |
| Mean HR during race (bpm)                                           | 156 ± 11                      | 156 ± 11                 | 0.97 |
| HR <sub>M</sub> /calculated HR <sub>max</sub> (%)                   | 89.1 ± 4.5                    | 89.6 ± 4.7               | 0.41 |
| Training history                                                    |                               |                          |      |
| Training distance per week during the last 10 wk before race (km)   | 49.7 ± 18.2                   | 53.6 ± 22.4              | 0.43 |
| Previous marathon races finished (median (IQR))                     | 4 (1-7)                       | 3 (1–7)                  | 0.69 |
| Cardiovascular risk factors (%)                                     |                               |                          |      |
| Diabetes mellitus (type 1 or 2)                                     | 0%                            | 0%                       | 1.00 |
| Family history of cardiovascular disease                            | 57%                           | 46%                      | 0.22 |
| Hypercholesterolemia (total cholesterol ≥ 240 mg·dL <sup>-1</sup> ) | 12%                           | 14%                      | 0.72 |
| Hypertension (RRsys > 140 mm Hg or RRdia > 90 mm Hg)                | 9%                            | 16%                      | 0.21 |
| Smoker/ex-smoker                                                    | 4%/0%                         | 4%/2%                    | 1.00 |

Data are presented as mean  $\pm$  SD or median (IQR).

HR<sub>M</sub>, mean HR during marathon race; RRdia, diastolic blood pressure; RRsys, systolic blood pressure.



## Polyphenols & Inflammation (PP)



GEE analysis: difference in leukocyte levels at V3 (immediately postrace) and V4 (24-hrs post-race): overall comparison: mean difference  $\pm$  SE = 1.2  $\pm$  0.65 \* 10<sup>9</sup>/L, p = 0.02

p = 0.03

Beer and Health

Scherr et al., Med. Sci. Sports Exerc., 2012: 18-26.

## **Polyphenols & URTI**



Scherr et al., Med. Sci. Sports Exerc., 2012: 18–26.

## Cardiovascular effects of NAB



Beer and Health

Scherr et al., in revision

## **Rheologic effects of NAB**

Within the group with upper quartile intake of study beverage (>1.28 L/d)



Scherr et al., submitted

## Synopsis

- Polyphenols (in **non**-alcoholic beer) seems to
  - have anti-inflammatory effects
  - reduce strain-induced incidence of upper respiratory tract infections
  - be linked to enhanced cardiomyocyte recovery after prolonged and strenuous exercise
  - have possible rheological effects with respect to exercise-induced thrombocyte aggregation



# Bier ist gut ... sagt der Arzt !

Oberarbeitet?

Nervös? Verkrampft?



Bier hilft entspannen! Bier beruhigt die Nerven! Bier lockert die Glieder!

Mit dem Bier im Bunde - Natur und Gesundheit!



## Contact

Ass. Prof. Johannes Scherr, MD
 Department of
 Prevention, Rehabilitation and Sports Medicine
 Klinikum rechts der Isar
 Technische Universität München, Germany

Georg-Brauchle-Ring 56-58 (Campus C) 80992 München

• scherr@sport.med.tum.de www.sport.med.tum.de

