Polyphenols in beer: the role of xanthohumol and isoxanthohumol

Rosa M. Lamuela
University of Barcelona
Index

• What are polyphenols
• Polyphenols and health outcomes
• Polyphenols from beer
• Health effects of prenylflavonoids from beer
In 1991, key word: polyphenols
Only 23 papers about:

- Antioxidant effects *in vitro*
- Presence in food
- Antitumoral properties

On September 26 2014, Key word: polyphenols
1318 papers in 12 months

- Apoptosis
- Arthritis
- Inflammation
- Effect on testosterone
- Antibactericide
- Cosmoceutical
- ...
Nowadays they are not considered **nutrients** however they are bioactive compounds, since they perform important physiological functions in the organism.

Chiou, Y.-S. et al. 2014
• What are polyphenols
• Polyphenols and health outcomes
• Polyphenols from beer
• Health effects of prenylflavonoids from beer
• Isoxanthohumol reliable biomarker of beer consumption
Polyphenols and Cardiovascular Health

7447
55-80 years
Free of CVD but at high risk

FFQ 1 → FFQ 2 → FFQ n → CUMULATIVE polyphenol intake

502 polyphenols in 452 foods

Polyphenol-Explorer

Database on polyphenol content in foods

Beer and Health
Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study

A. Tresserra-Rimbau a, b, E.B. Rimm c, d, A. Medina-Remón a, b, M.A. Martínez-González b, e, R. de la Torre b, f, D. Corella b, g, J. Salas-Salvadó b, h, E. Gómez-Gracia b, i, J. Lapetra b, j, F. Arós b, k, M. Fiol b, l, E. Ros b, m, L. Serra-Majem b, n, X. Pintó b, o, G.T. Saez b, p, J. Basora b, q, J.V. Sorli b, r, J.A. Martínez b, s, E. Vinyoles b, t, V. Ruiz-Gutiérrez b, u, R. Estruch b, v, R.M. Lamuela-Raventós a, b, * on behalf of the PREDIMED Study Investigators
Table 2: Association between quintiles of cumulative polyphenol intake (total and main groups) and incident CVD in the PREDIMED study.

<table>
<thead>
<tr>
<th>Total polyphenols (mg/d)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total polyphenols (mg/d)</td>
<td>562</td>
<td>701</td>
<td>800</td>
<td>917</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>No. of CVD cases</td>
<td>66</td>
<td>49</td>
<td>58</td>
<td>49</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>No. of person years</td>
<td>5312</td>
<td>6668</td>
<td>6905</td>
<td>6629</td>
<td>5554</td>
<td></td>
</tr>
<tr>
<td>Age and sex adjusted</td>
<td>1.00</td>
<td>0.60 (0.38–0.95)</td>
<td>0.62 (0.39–0.97)</td>
<td>0.58 (0.36–0.91)</td>
<td>0.58 (0.36–0.93)</td>
<td>0.04</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00</td>
<td>0.57 (0.36–0.92)</td>
<td>0.60 (0.38–0.95)</td>
<td>0.54 (0.34–0.87)</td>
<td>0.51 (0.30–0.84)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total polyphenols (mg/d)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total polyphenols (mg/d)</td>
<td>562</td>
<td>701</td>
<td>800</td>
<td>917</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>No. of CVD cases</td>
<td>66</td>
<td>49</td>
<td>58</td>
<td>49</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>No. of person years</td>
<td>5312</td>
<td>6668</td>
<td>6905</td>
<td>6629</td>
<td>5554</td>
<td></td>
</tr>
<tr>
<td>Age and sex adjusted</td>
<td>1.00</td>
<td>0.60 (0.38–0.95)</td>
<td>0.62 (0.39–0.97)</td>
<td>0.58 (0.36–0.91)</td>
<td>0.58 (0.36–0.93)</td>
<td>0.04</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00</td>
<td>0.57 (0.36–0.92)</td>
<td>0.60 (0.38–0.95)</td>
<td>0.54 (0.34–0.87)</td>
<td>0.51 (0.30–0.84)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lignans (mg/d)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignans (mg/d)</td>
<td>0.44</td>
<td>0.57</td>
<td>0.67</td>
<td>0.77</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>No. of cases</td>
<td>69</td>
<td>57</td>
<td>53</td>
<td>44</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>No. of person years</td>
<td>4625</td>
<td>6122</td>
<td>6899</td>
<td>6692</td>
<td>6530</td>
<td></td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.00</td>
<td>0.61 (0.40–0.95)</td>
<td>0.55 (0.36–0.86)</td>
<td>0.57 (0.35–0.91)</td>
<td>0.51 (0.31–0.84)</td>
<td>0.004</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00</td>
<td>0.65 (0.41–1.01)</td>
<td>0.55 (0.35–0.87)</td>
<td>0.61 (0.37–0.99)</td>
<td>0.50 (0.29–0.85)</td>
<td>0.007</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.00</td>
<td>0.84 (0.41–0.99)</td>
<td>0.54 (0.34–0.85)</td>
<td>0.60 (0.36–0.97)</td>
<td>0.51 (0.30–0.86)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

* HR (95% CI).
* Additionally adjusted for smoking, BMI, alcohol, physical activity, family history of CVD, aspirin use, antihypertensive drugs, cardiovascular drugs, diabetes status, and total energy intake.
* Additionally adjusted for intake of protein, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol.
FLAVONOIDS AND CARDIOVASCULAR HEALTH

<table>
<thead>
<tr>
<th>Table 3</th>
<th>The relationship between CVD and cumulative flavonoids subclasses intake (in quintiles) in participants from the PREMID study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td>Q1</td>
</tr>
<tr>
<td>Anthocyanins (mg/d)</td>
<td></td>
</tr>
<tr>
<td>No. of cases</td>
<td>69</td>
</tr>
<tr>
<td>No. of person years</td>
<td>5375</td>
</tr>
<tr>
<td>Age and sex</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.95 (0.65−1.40)*</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.15 (0.74−1.79)</td>
</tr>
<tr>
<td>Model 4</td>
<td>1.18 (0.76−1.84)</td>
</tr>
<tr>
<td>Dihydrochalcones (mg/d)</td>
<td></td>
</tr>
<tr>
<td>No. of cases</td>
<td>47</td>
</tr>
<tr>
<td>No. of person years</td>
<td>5036</td>
</tr>
<tr>
<td>Age and sex</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.73 (0.51−1.67)</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.25 (0.78−1.99)</td>
</tr>
<tr>
<td>Model 4</td>
<td>1.24 (0.78−1.99)</td>
</tr>
</tbody>
</table>

Flavanols (mg/d)					
No. of cases	69	51	59	59	35
No. of person years	4841	6409	7058	6860	5900
Age and sex					
Model 2	0.64 (0.43−0.94)	0.65 (0.44−0.95)	0.55 (0.37−0.82)	0.33 (0.21−0.53)	<0.0001
Model 3	0.65 (0.41−1.02)	0.70 (0.44−1.09)	0.57 (0.36−0.91)	0.36 (0.20−0.63)	0.0004
Model 4	0.70 (0.44−1.10)	0.77 (0.49−1.21)	0.66 (0.41−1.05)	0.40 (0.23−0.72)	0.003

- **HR (95% CI)**
- **Model 2** - age, sex, smoking, BMI, alcohol, energy, physical activity, family history of CVD, aspirin use, antihypertensive drugs, cardiovascular drugs, and diabetes status.
- **Model 3** - model 2 plus intake of proteins, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol.
Phenolic Acids and Cardiovascular Health

Table 4: The relationship between CVD and cumulative phenolic acids subclasses intake (in quintiles) in participants from the PREDIMED study.

<table>
<thead>
<tr>
<th>Phenolic acids</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxybenzoic acids (mg/d)</td>
<td>6.9</td>
<td>12.9</td>
<td>17.8</td>
<td>24.1</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>No. of cases</td>
<td>69</td>
<td>62</td>
<td>47</td>
<td>55</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>No. of person years</td>
<td>5398</td>
<td>6603</td>
<td>6734</td>
<td>6853</td>
<td>5480</td>
<td></td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.00</td>
<td>0.80 (0.54–1.17)</td>
<td>0.60 (0.40–0.90)</td>
<td>0.54 (0.36–0.82)</td>
<td>0.46 (0.29–0.71)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00</td>
<td>0.82 (0.52–1.29)</td>
<td>0.65 (0.40–1.06)</td>
<td>0.59 (0.36–0.97)</td>
<td>0.37 (0.20–0.66)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.00</td>
<td>0.91 (0.57–1.43)</td>
<td>0.74 (0.46–1.22)</td>
<td>0.73 (0.44–1.21)</td>
<td>0.47 (0.26–0.86)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hydroxycinnamic acids (mg/d)</td>
<td>138</td>
<td>207</td>
<td>252</td>
<td>316</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>No. of cases</td>
<td>61</td>
<td>50</td>
<td>42</td>
<td>59</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>No. of person years</td>
<td>5632</td>
<td>6486</td>
<td>6869</td>
<td>6914</td>
<td>5167</td>
<td></td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.00</td>
<td>0.80 (0.53–1.20)</td>
<td>0.55 (0.35–0.87)</td>
<td>0.92 (0.62–1.36)</td>
<td>1.08 (0.72–1.63)</td>
<td>0.40</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00</td>
<td>0.81 (0.51–1.29)</td>
<td>0.57 (0.34–0.96)</td>
<td>0.91 (0.58–1.42)</td>
<td>0.99 (0.62–1.58)</td>
<td>0.71</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.00</td>
<td>0.79 (0.49–1.25)</td>
<td>0.58 (0.35–0.97)</td>
<td>0.86 (0.55–1.36)</td>
<td>0.93 (0.58–1.49)</td>
<td>0.93</td>
</tr>
<tr>
<td>Other phenolic acids (mg/d)</td>
<td>0.1</td>
<td>2.5</td>
<td>4.6</td>
<td>8.6</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>No. of cases</td>
<td>58</td>
<td>66</td>
<td>47</td>
<td>62</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>No. of person years</td>
<td>5100</td>
<td>5225</td>
<td>6571</td>
<td>7787</td>
<td>5385</td>
<td></td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.00</td>
<td>1.11 (0.75–1.64)</td>
<td>0.69 (0.45–1.08)</td>
<td>0.79 (0.52–1.21)</td>
<td>0.73 (0.46–1.14)</td>
<td>0.10</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00</td>
<td>1.31 (0.83–2.09)</td>
<td>0.75 (0.44–1.28)</td>
<td>0.88 (0.54–1.42)</td>
<td>0.74 (0.45–1.24)</td>
<td>0.11</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.00</td>
<td>1.39 (0.87–2.22)</td>
<td>0.82 (0.48–1.39)</td>
<td>0.92 (0.57–1.51)</td>
<td>0.82 (0.49–1.39)</td>
<td>0.19</td>
</tr>
</tbody>
</table>

* HR (95% CI).

b Model 2: age, sex, smoking, BMI, alcohol, energy, physical activity, family history of CVD, aspirin use, antihypertensive drugs, cardiovascular drugs, and diabetes status.

c Model 3 - model 2 plus intake of proteins, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol.
Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial

Anna Tresserra-Rimbau¹,², Eric B Rimm³, Alexander Medina-Remón²,¹⁷, Miguel A Martínez-González²,⁴, M Carmen López-Sabater¹,², María I Covaś²,⁵, Dolores Corella²,⁶, Jordi Salas-Salvadó²,⁷, Enrique Gómez-Gracia²,⁸, José Lapetra²,⁹, Fernando Arós²,¹⁰, Miquel Fiol²,¹¹, Emili Ros²,¹², Lluís Serra-Majem²,¹³, Xavier Pinto²,¹⁴, Miguel A Muñoz²,¹⁵, Alfredo Gea²,⁴, Valentina Ruiz-Gutiérrez²,¹⁶, Ramón Estruch²,¹⁷, Rosa M Lamuela-Raventós¹²* and on behalf of the PREDIMED Study Investigators
Polyphenol Intake and Mortality Risk

Product-Limit Survival Estimates

Survival

follow-up years

intake low medium high
Total polyphenol intake was significantly associated with a decrease (almost 40%) in all-cause mortality, after adjusting for all confounders. The dose-response trend suggested an L-shaped relationship.
Polyphenol Intake and Mortality Risk

Hazard ratios (95% CI) of total mortality for the highest vs. lowest quintiles of polyphenol intake.

Isoflavones
- HR 0.49; CI 0.28 to 0.84; P-trend=0.009

Stilbenes
- HR 0.48; CI 0.25 to 0.91; P-trend=0.04

Lignans
- HR 0.60; CI 0.37 to 0.95; P-trend=0.03
• What are polyphenols
• Polyphenols and health outcomes
• Polyphenols from beer
• Health effects of prenylflavonoids from beer
We analyzed the beer polyphenolic profile by High Resolution Mass Spectrometry (LC-LTQ-Orbitrap).

- 3 types of Beer: Marzen Bier, Pilsen and Lager.
- Full Scan Mode and Tandem MS/MS experiments with accurate mass measurements of the ions and the fragments.
- 47 phenolic compounds were detected, 7 of them were reported for the first time.
Malt Polyphenols

Hydroxybenzoic acids
- Gallic acid
- Protocatechuic acid-\(O\)-hexoside
- Dihydroxybenzoic acid
- Protocatechuic acid
- Hydroxybenzoic acid
- Vanillic acid

Hydroxycinnamic acids
- Caffeic acid \(O\)-hexoside
- Caffeic acid
- 1-caffeoylquinic acid
- 3-caffeoylquinic acid
- 4-caffeoylquinic acid
- 5-caffeoylquinic acid
- Coumaric acid \(O\)-hexoside
- Feruloylquinic acid
- Sinapic acid-\(O\)-hexoside
- Sinapic acid
- Ferulic acid

Alkylmethoxyphenols
- 4-vinylguaiacol

Hydroxyphenylacetic acids
- Hydroxyphenylacetic acid

Polyphenols
- 70-80% of the beer polyphenols come from malt
Flavanols
- Catechin
- Catechin-<i>O</i>-hexoside
- Catechin-<i>O</i>-dihexoside
- Epicatechin

Flavonols
- Quercetin-<i>3</i>-<i>O</i>-glucoside
- Kaempferol-<i>O</i>-hexoside
- 3,7-dimethylquercetin

Miscellaneous
- Indole-3-carboxylic acid

Flavones
- Apigenin-<i>C</i>-hexoside-<i>O</i>-hexoside
- Apigenin-<i>C</i>-hexoside-pentoside
- Apigenin-<i>C</i>-hexoside
Hop Polyphenols

α-acids and β-acids
- co-Humulone
- ad-Humulone
- n-Humulone
- Iso-α-cohumulone
- Iso-α-adhumulone
- Iso-α-nhumulone
- Lupulone

Prenylflavanoids
- Isoxanthohumol
- Xanthohumol
- DesmethyIxanthohumol
- 8-prenylNaringenin
- 6-prenylNaringenin

30-20% of the beer polyphenols come from hops.

Beer and Health
Polyphenol Intake from one Drink

- 330 mL: 92 mg
- 150 mL: 48 mg
- 150 mL: 300 mg
Beer and Wine: a Metanalisi

Reduction of cardiovascular risk
- Wine: -32%
- Beer: -22%

Circulation 2002
• What are polyphenols
• Polyphenols and health outcomes
• Polyphenols from beer
• Health effects of prenylflavonoids from beer
Isomerization in brewing

95% of the prenylflavanoids found in hops are xanthohumol, desmethylxanthohumol, and 3-geranylchalconenaringenina. (Stevens et al, 1999)

High content in isoxanthohumol (prenylflavanone) and low content in xanthohumol (Stevens et al 1999)

Isoxantohumol is converted to 8-prenylnaringenin by an O-desmethylation catalyzed by gut microbiota. (Hanske L et al 2010, Possemiers S et al 2005)
Biological Activity of Beer Prenylflavanoids

8-prenylNaringenin

- Most potent phytostrogen known until date. It showed similar binding characteristics to ERα and ERβ *in vitro*. The oestrogenic activity of 8-prenylNaringenin was greater than that of established phyto-oestrogens such as coumestrol, genistein and daidzein. *(Milligan et al. 2000)*

- Owing to this phytoestrogenic activity, 8PN has been proposed as a treatment for menopausal symptoms, such as hot flashes and osteoporosis.
Biological Activity of Beer Prenylflavanoids

Xanthohumol and Isoxanthohumol

- Xanthohumol and isoxanthohumol have shown weak or no estrogenic activity.
- IX is considered to be a source of 8-prenylnaringenin, because it is metabolized to 8-prenylnaringenin in the intestinal tract by gut microbiota.
Urinary Isoxanthohumol as a Biomarker of Beer Consumption

Urinary Isoxanthohumol Is a Specific and Accurate Biomarker of Beer Consumption

Paola Quíser-Rada,1,4,5 Miriam Martínez-Huélamo,4,5 Gemma Chiva-Blanch,5,6 Olga Jáuregui,7 Ramon Estruch,5,6 and Rosa M. Lamuela-Raventós4,5,8

1Department of Nutrition and Food Science-XARTA-INSIA, School of Pharmacy, University of Barcelona, Barcelona, Spain; 5CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain; and 6Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer, and 7Scientific and Technological Center, University of Barcelona, Barcelona, Spain
Urinary Isoxanthohumol as a Biomarker of Beer Consumption

Dose-response, randomized, cross-over clinical trial

20 male volunteers
0 mL
330 mL
660 mL
990 mL

20 female volunteers
0 mL
330 mL
495 mL
660 mL

5 days washout period before each intervention

8 hours after
Urinary excretion of Isoxanthohumol in male (A) and female (B) volunteers 8 hours after the intake of different volumes of beer.
In Free Living Population in PREDIMED

IX is really a good boomeraker that can be used in epidemiological studies to evaluate beer health outcomes.

... two beers, or not two beers...
• Polyphenols consumption decrease all cause of mortality and CVD
• Beer has been shown to be a good source of polyphenols and it is one of the main food contributor to hydroxybenzoic acid intake in the European Prospective Investigation into Cancer and Nutrition cohort study.
• High intake of hydroxibenzoics decrease cardiovascular risk by 53% in the PREDIMED population
• IX is a good biomarker that may be used in epidemiological studies to evaluate beer health outcomes
We would like to thank:
Visit our web site:

http://www.polyphenolresearch.com

Group director Rosa Mª Lamuela Raventós

Board Committee Ramón estruch Riba

Predoctoral researchers

Miriam Martínez Mariel Colman Gemma Sasot Naiara Orrego
Anna Tresserra Paola Quífer Guao Xiao Hui Ana Barrionuevo

Collaborators

Mónica Vázquez Montse Illán Xavier Torrado
THANK YOU
lamu@ub.edu